Home
Class 12
MATHS
If z1a n dz2 are complex numbers and u=s...

If `z_1a n dz_2` are complex numbers and `u=sqrt(z_1z_2)` , then prove that `|z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|`

Text Solution

Verified by Experts

`|(z_(1)+z_(2))/(2)+u|+|(z_(1) +z_(2))/(2) -u|`
`=|(z_(1)+z_(2))/(2) +sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2) =sqrt(z_(1)z_(2))|`
`=|((sqrt(z_(1))+sqrt(z_(2))^(2)))/(2)|+|((sqrt(z_(1))-sqrtz_(2)))/(z)|`
`|((p+q)^(2))/(2)|+|((p-q)^(2))/(2)|" "("Where" p = sqrt(z_(1)) and q = sqrt(z_(2)))`
`= (1)/(2) [|p+q|^(2) +|p-q|^(2)]`
`=(1)/(2) [2|p|^(2)+2|q|^(2)]`
`|p|^(2) +|q|^(2)`
`=|p^(2)| +|q^(2)|`
`=|z_(1)| +|z_(2)|`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|110 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

For any two complex numbers z_1 and z_2 , , prove that Re (z_1 z_2) = Re z_1 Re z_2 – Imz_1 Imz_2

if z_1 and z_2 are two complex numbers such that absz_1lt1ltabsz_2 then prove that abs(1-z_1barz_2)/abs(z_1-z_2)lt1

If z_(1)and z_(2) are conjugate complex number, then z_(1)+z_(2) will be

If z_1 and z_2 are two complex no. st abs(z_1+z_2) = abs(z_1)+abs(z_2) then

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

For any two complex numbers z_(1) and z_(2) , prove that Re (z_(1)z_(2)) = Re z_(1) Re z_(2)- Imz_(1) Imz_(2)