Home
Class 12
MATHS
If |z|<=1,|w|<=1, then show that |z- w|...

If ` |z|<=1,|w|<=1`, then show that `|z- w|^2<=(|z|-|w|)^2+(argz-argw)^2`

Text Solution

Verified by Experts

Let `z =|z|e^(ialpha) and w =|w|e^(ibeta)`
Now, `|z -w|^(2) =|z|^(2) +|w|^(2) -2Re (zbarw)`
`= (|z| -|w|)^(2) -2|z||w| -2Re(|z||w|e^(i(alpha -beta)))`
`=(|z| -|w|)^(2) +|z||w|(2-2cos (alpha- beta))`
` lt (|z| - |w|)^(2) + 4sin^(2) ((alpha-beta)/(2)) " "(because |z| le 1,|w| le1)`
`le (|z| -|w|)^(2) + 4((alpha - beta)/(2))^(2) " " (because sin theta lt theta "for" theta in (0,pi//2))`
`= (|z| -|w|)^(2) + 4(alpha - beta)^(2)`
`= (|z| -|w|)^(2) + (arg a -arg w)^(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|110 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z-3|=min{|z-1|,|z-5|}, then the values of Re(z) will be

If |z+i|-|z-1|=|z|-2=0 for a complex number z, then z =

If |z_1-z_0|=|z_2-z_0|=a and amp((z_2-z_0)/(z_0-z_1))=pi/2 , then find z_0

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If z=x+iy and |z|=1 , show that (z-1)/(z+1)(z!=-1) is a purely imaginary quantity.

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.