Home
Class 12
MATHS
If z is a complex number, then find the ...

If `z` is a complex number, then find the minimum value of `|z|+|z-1|+|2z-3|dot`

Text Solution

Verified by Experts

The correct Answer is:
`-1`

`z +z ^(-1)=1`
` or z^(2) -z + 1=0`
`rArr z =- omega or -omega^(2)`
For `z = -omega`
`z^(100) + z^(-100) = (-omega)^(100) + (-omega)^(100)`
`= omega+(1)/(omega) = omega + omega^(2)=1`
For `z = -omega^(2)`,
`z^(100) + z^(-100)=- (-omega^(2))^(100) _ (-omega^(2))^(-100)`
` = omega^(200) + (1)/(omega^(200))`
`= omega^(2)+(1)/(omega^(2)) = omega^(2) + omega = -1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.5|12 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.6|10 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.3|7 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

For any complex number z find the minimum value of |z|+|z-2i|

The minimum value of |z-1|+|z-3| is

z is a complex number. The minimum value of |z | + I z - 2| is

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

For any complex number z, show that the minimum value of |z|+|z-1| is 1.

If Z is a non-real complex number, then find the minimum value of | (Imz^5)/(Im^5z) |

If z is complex number such that |z|ge2 , minimum value of |z+(1)/(2)| -

For any complex number z, show that the minimum value of | z| + | z -1 | is 1.

If z is a complex number such that abszge2 then the minimum value of abs(z+1/2)

If z be a complex number and |z+5|le6 ,then find the maximum and minimum values on |z+2|.