Home
Class 12
MATHS
Find the modulus, argument and the pri...

Find the modulus, argument and the principal agrument of the complex number `(tan 1-i)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`"Modulus"=(1)/(sqrt(2))"cosec"(pi)/(5),"argument"=(11pi)/(20)`

`z=(i-1)/(i(1-cos.(2pi)/(5))+sin.(2pi)/(5))`
`=(i-1)/(i2sin^(2).(pi)/(5) + 2sin.(pi)/(5)cos.(2pi)/(5))`
`= (i-1)/((2sin.(pi)/(5))(cos.(pi)/(5) +isin.(pi)/(5)))`
`|z|=(|i-1|)/((2sin.(pi)/(5))|(cos.(pi)/(5) +isin.(pi)/(5))|)`
`=(sqrt(2))/((2sin.(pi)/(5))|(cos.(pi)/(5)+isin.(pi)/(5))|)`
`=(1)/(sqrt(2)) cosec.(pi)/(5)`
` argz= arg[(i-1)/((2sin .(pi)/(5))(cos .(pi)/(5)+isin.(pi)/(5)))]`
`=arg(-1+i) - arg(2sin.(pi)/(5))-arg(cos.(pi)/(5) + isin.(pi)/(5))`
`=(3pi)/(4) -0-(pi)/(5)=(11pi)/(20)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.5|12 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Find the modulus, argument, and the principal argument of the complex numbers. (i-1)/(i(1-cos((2pi)/5))+sin((2pi)/5)

The argument of the complex number z = 2i is

Find the modulus and argument of the complex number (1+2i)/(1-3i)

Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))^2)/(-2i(-sqrt(3)+i))

The argument of the complex number z=1 + i tan ""(3pi)/(5) is-

Find the conjugate of the complex number z=13-i

Find modulus and argument of the complex numbers z=-1-isqrt(3)

Find the modulus of the complex number z=1+i

Find the modulus of the complex number z=11-i

Find the modulus of the complex number z=4-i