Home
Class 12
MATHS
If |z1-z0|=z2-z1=pi/2 , then find z0....

If `|z_1-z_0|=z_2-z_1=pi/2` , then find `z_0`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2){(i +1)z_(1) +(1-i)z_(2)}`

Here, `|(z_(2)-z_(0))/(z_(0)-z_(1))| = 1 and amp ((z_(2)-z_(0))/(z_(0)-z_(1))) = (pi)/(2)`
`therefore (z_(2)-z_(0))/(z_(0)-z_(1)) = 1{cos.(pi)/(2) + i sin .(pi)/(2)} =i`
`rArr z_(2) -z_(0) = iz_(0) = iz_(0)`
`rArr z_(2)+iz_(1) = (i+1)z_(0)`
`or z_(0) = (z_(2) + iz_(1))/(1+i)`
`=((z_(2) + iz_(1))(1-i))/(1^(2)+ 1^(2))`
`=(1)/(2){(i+ 1)z_(1)+(1-i)z_(2)}`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise EXERCISE3.5|12 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If |z_1-z_0|=|z_2-z_0|=a and amp((z_2-z_0)/(z_0-z_1))=pi/2 , then find z_0

Complex numbers z_1 , z_2 , z_3 are the vertices A, B, C respectively of an isosceles right angled triangle with right angle at C and (z_1- z_2)^2 = k(z_1 - z_3) (z_3 -z_2) , then find k.

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi

If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then z_1, z_2, z_3, z_4 are

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot