Home
Class 12
MATHS
Let omega be a complex number such that ...

Let `omega` be a complex number such that `2omega+1=z` where `z=sqrt(-3.)` `If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k ,` then`k` is equal to : `-1` (2) `1` (3) `-z` (4) `z`

A

1

B

`z`

C

`-z`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B

Here, `omega` is complex cube root of untiy.
Applying `R_(1) to R_(1) + R_(2) + R_(3)`, then given matrix reduces to
`|{:(,3,0,0),(,1,-omega^(2)-1,omega^(2)),(,1, omega^(2), omega):}| = 3(-1 - omega-omega)=-3z`
`rArr k = -z`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPES|33 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex number such that omega ^(3) =1, then the value of (1+ omega -omega^(2))^(4)+(1+ omega ^(2)-omega )^(4) is-

Let z, omega be complex numbers such that barz+ibaromega=0 and arg(z omega)=pi , then arg z equals

Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 and |z-iomega|=|z-i bar omega|=2, then z equals (a) 1ori (b). ior-i (c). 1or-1 (d). ior-1

If omega is any complex number such that z omega=|z|^(2) and |z-barz|+|omega+baromega|=4 , then as omega varies, then the area bounded by the locus of z is

Prove that (1-omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)……….. to 2n terms = 2^(2n)

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega be an imaginary cube root of 1 then the value of |[1,omega^2,omega],[omega,1,omega^2],[omega^2,omega,1]| is

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

omega is an imagianry cube root of unity, show that, (1-omega^(2))(1-omega^(4))(1-omega^(8))(1-omega^(10))=9