Home
Class 12
MATHS
If alpha, beta in C are distinct roots o...

If `alpha, beta in C` are distinct roots of the equation `x^2+1=0` then `alpha^(101)+beta^(107)` is equal to

A

2

B

`-1`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
D

`x^(2) - x + 1 =0`
`rArr x = (1 pm sqrt(-3))/(2)`
`= (1pm isqrt(3))/(2)`
`=-[(-1 pm isqrt(3))/(2)]`
`therefore x = - omega, -omega^(2)` where `omega` is imaginary cube root of unity.
Let `alpha = - omega and beta= - omega^(2)`
` therefore alpha^(101) + beta^(107)= (-omega )^(101) + (-omega^(2))^(107)`
`= -[omega^(101) + omega^(214)]`
` =-[omega^(99) omega^(2) + omega^(213)omega ]`
`=-[omega^(2) + omega]`
` =-[omega^(2) + omega]`
`=- (-1) = 1" "("as" 1+ omega+omega^(2) =0)`
If we consider `alpha = - omega^(2) and beta = -omega`, we get the same results.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPES|33 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0 . Then alpha^(15) + beta^(15) is equal to

If tan(alpha/2) and tan(beta/2) are the roots of the equation 8x^2-26x+15=0 then cos(alpha+beta) is equal to

If alpha and beta are the distinct roots of the equation x^2-p(x+1)-b=0 , then E= (alpha^2+2alpha+1)/(alpha^2+2alpha+b) +(beta^2+2beta+1)/(beta^2+2beta+b) = ____

If alpha, beta be the roots of the equation x^(2)+x+1=0 , the value of alpha^(4)beta^(4)-alpha^(-1)beta^(-1) is

If alphaand beta are the roots of x^(2)-x+1=0 ,then the value of alpha^(2013)+beta^(2013) is equal to -

If alpha and beta are the roots of x^2-x+1=0 ,then the value of alpha^(2013)+beta^(2013) is equal to

IF alpha and beta be the roots of the equation ax^2+bx+c=0 , find the values of alpha^2+beta^2

IF alpha and beta are the roots of the equation x(x-3)=4, find the value of alpha^2+beta^2 .

If alpha,beta are the roots of the quadratic equation x^(2)+px+q=0 ,then the values of alpha^(3)+beta^(3)andalpha^(4)+alpha^(2)beta^(2)+beta^(4) are respectively .