Home
Class 12
MATHS
Let a,b in R and a^(2)+b^(2) ne 0. Sup...

Let `a,b in R` and `a^(2)+b^(2) ne 0`.
Suppose `S={z in C:z=(1)/(a+ibt),t in R,t ne 0}`, where `i=sqrt(-1)`. If z=x+iy and `z in S`, then (x,y) lies on

A

the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)` for `a gt 0 be ne 0`

B

the circle with radius `-(1)/(2a)` and centre `(-(1)/(2) ,0) a lt 0, b ne 0`

C

the axis for `a ne 0, b =0`

D

the y-axis for `a = 0, bne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`z =(1)/(a+ibt)`
`rArr x +iy = (a-ibt)/(a^(2) + b^(2)t^(2))`
`rArr x = (a)/(a^(2) + b^(2)t^(2)),y = (-bt)/(a^(2) =b^(2)t^(2))`
Eliminating t, we get
`x^(20 + y^(2) = (x)/(a)`
`rArr (x-(1)/(2a))^(2) +y^(2) = ((1)/(2a))^(2)`
`therefore `Option (1) is correct.
(3),(4) can be verified by putting b = 0 and a=0 respectively.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

Let a , b in RR and a^(2) + b^(2) ne 0 . Suppose s = {z in CC:z = (1)/ (a + ibt),t in RR , t ne 0 } where I = sqrt( - 1) . If z = x + iy and z in S then ( x , y) lies on

Suppose z=x+iy where x and y are real numbers and i=sqrt(-1) the points (x,y) for which (z-1)/(z-i) is real lie on

If z=x+iy and |2z-1| =|z-2|then prove that x^2+y^2=1

If z=x+iy , show that sqrt(2)|z| ge |x|+ |y| .

Suppose z=x+iy where x and y are real numbers and i=sqrt(-1) . The points (x ,y) for which (z-1)/(z-i) is real . Lie om -

If z=x+iy and |z-1|^(2)+|z+1|^(2)=4, determine the position of the point z in the complex plane.

If z=x+iy and |z-1|+|z+1|=4,then show that 3x^2+4y^2=12 ,where i=sqrt-1

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

If z=(i)^((i)^(i)) w h e r e i=sqrt(-1),t h e n|z| is equal to a. 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If z=x+iy and |2z+1|=|z-2i|,then prove that 3(x^2+y^2)+4(x+y)=3