Home
Class 12
MATHS
Let a , b ,xa n dy be real numbers such ...

Let `a , b ,xa n dy` be real numbers such that `a-b=1a n dy!=0.` If the complex number `z=x+i y` satisfies `I m((a z+b)/(z+1))=y` , then which of the following is (are) possible value9s) of x?| `-1-sqrt(1-y^2)` (b) `1+sqrt(1+y^2)` `-1+sqrt(1-y^2)` (d) `-1-sqrt(1+y^2)`

A

`-1-sqrt(1-y^(2))`

B

`1+sqrt(1+y^(2))`

C

`1-sqrt(1+y^(2))`

D

`-1+sqrt(1-y^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, D

We have `Im((az + b)/(z+1))= y` and `z = x+iy`
`therefore Im((a(x+iy)+b)/(x+iy+1))= y`
`rArr IM(((ax+b+iay)(x+1-iy))/((x +1)^(2) +y^(2)))`
`rArr -y(ax + b)+ay(x+1)=y((x+1)^(2)+y^(2))`
`because y ne 0 and a-b=1`
`therefore (x+1)^(2) +y^(2) = 1`
`rArr x = - 1 pm sqrt(1-y^(2))`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE PUBLICATION|Exercise ARCHIVES (SINGLE CORRECT ANSWER TYPE )|11 Videos
  • CIRCLES

    CENGAGE PUBLICATION|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|102 Videos

Similar Questions

Explore conceptually related problems

sqrt(1+x^(2))dy+sqrt(1+y^(2))dx=0

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) ,show that dy/dx=sqrt((1-y^2)/(1-x^2))

If sqrt(1 -x^2) + sqrt(1-y^2) = a(x-y), show that, (dy)/(dx) = sqrtfrac(1-y^2)(1-x^2)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

Find the number of complex numbers which satisfies both the equations |z-1-i|=sqrt(2)a n d|z+1+i|=2.

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions