Home
Class 12
MATHS
Find the sum of the series 1xxn+2(n-1)+3...

Find the sum of the series `1xxn+2(n-1)+3xx(n-2)++(n-1)xx2+nxx1.`

Text Solution

Verified by Experts

Let `T_(r)` be the rth term of the given series. Then,
`T_(r)=rxx{n-(r-1)}`
=r(n-r+1)
=r{(n+1)-r}
=(n+1)r-`r^(2)`
`thereforesum_(r=1)^(n)T_(r)=sum_(r=1)^(n)[(n+1)r-r^(2)]`
`=(n+1)(sum_(r=1)^(n)r)-(sum_(r=1)^(n)r^(2))`
`=(n+1)(n(n+1))/2-(n(n+1)(2n+1))/6`
`=(n(n+1)(n+2))/6`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.85|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.86|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.83|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series 1.n+2(n-1)+3(n-2)+.....n.1 .

From the relation 1+x+x^(2)+* * * + x^(n-1)=(1-x^(n))/(1-x) , find the sum of the series 1+2x+3x^(2)+* * * +(n-1)x^(n-2) .

Find the sum of the series 1+2x+3x^2+....(n-1)x^(n-2) using differentiation.

Find the sum of the series 1+2(1-x)+3(1-x)(1-2x)+....+n(1-x)(1-2x) (1-3x)............[1-(n-1)x].

Find the sum of the series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+.....

Find the sum to n terms of the series : 1xx2xx3 + 2xx3xx4 + 3xx4xx5 + ...

Find the sum to n terms of each of the series in 1xx 2 xx 3 + 2 xx 3 xx 4 + 3 xx 4 xx 5 + ...

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

Find the sum of n terms of the series ab+(a-1)(b-1)+(a-2)(b-2)+.... if ab=1/6 and a+b=1/3 .

CENGAGE PUBLICATION-PROGRESSION AND SERIES-ILLUSTRATION 5.84
  1. Find the sum of the series 1xxn+2(n-1)+3xx(n-2)++(n-1)xx2+nxx1.

    Text Solution

    |