Home
Class 12
MATHS
Find the sum of the series (1^3)/1+(1^3+...

Find the sum of the series `(1^3)/1+(1^3+2^3)/(1+3)+(1^3+2^3+3^3)/(1+3+5)+` up to `n` terms.

Text Solution

Verified by Experts

Here
`T_(r)=(1^(3)+2^(3)+3^(3)+..+r^(3))/(1+3+5+….+(2r-1))`
`=([(r(r+1))/2]^(2))/(r/2[1+(2r-1)])`
`=([(r(r+1))/2]^(2))/r^(2)`
`=((r+1)^(2))/4`
`rArr` Sum=`sum_(r=1)^(n)((r+1)^(2))/4`
`=1/4(2^(2)+3^(2)+4^(2)+..+(n+1)^(2))`
`=1/4[(1^(2)+2^(2)+3^(2)+4^(2)+....+(n+1)^(2))-1^(2)]`
`=1/4[((n+1)(n+2)(2n+3))/6-1]`
`=(n(2n^(2)+9n+13))/24`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.87|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.88|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.85|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series, (1^(3))/(1)+(1^(3)+2^(3))/(1+3) + (1^(3)+2^(3)+3^(3))/(1+3+5)+.... upto nth term.

The sum of first 9 terms of the series 1^3/1 + (1^3 + 2^3)/(1 + 3) + (1^3 + 2^3 + 3^3)/(1 + 3 + 5) + ....... is

The sum of the series 1^3 - 2^3 + 3^3 - ....+ 9^3 =

Find the sum of the series 1-3x+5x^2-7x^3+ ton terms.

Find the sum of the following series up to n terms: 1^3/1+(1^3+2^3)/(1+3)+(1^3+2^3+3^3)/(1+3+5)+.......

Find the sum of the series, (1^(2))/(3)+(1^(2)+2^(2))/(5)+(1^(2)+2^(2)+3^(2))/(7)+.. upto n th term.

Find the sum of the series 1.n+2(n-1)+3(n-2)+.....n.1 .

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

If the sum of n terms of the series 1/1^3+(1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3)+..... is S_n , then S_n exceeds 1.99 for all n greater than

Find the sum of the series 1/1.3+2/(1.3.5)+3/(1.3.5.7) ...upto infinity