Home
Class 12
MATHS
For and odd integer n ge 1, n^(3) - (n -...

For and odd integer `n ge 1, n^(3) - (n - 1)^(3) ` + ……
`+ (- 1)^(n-1) 1^(3)`

Text Solution

Verified by Experts

Since n is an odd integer, `(-1)^(n-1)=1` and n-1,n-3,n-5,… are even integers.
The given series is
`n^(3)-(n-1)^(3)+(n-2)^(3)-(n-3)^(3)+…+(-1)^(n-1)1^(3)`
`=[n^(3)+(n-1)^(3)+(n-2)^(3)+..+1^(3)]-2[(n-1)^(3)+(n-3)^(3)+…+2^(3)]`
`=(n^(2)(n+1)^(2))/4-2xx2^(3)[1^(3)+2^(3)+3^(3)+..+((n-1)/2)^(3)]`
`=(n^(2)(n+1)^(2))/4-16[1/2((n-1)/2)((n-1)/2+1)]^(2)`
`=(n^(2)(n+1)^(2))/4-((n-1)^(2)(n+1)^(2))/4`
`=((n+1)^(2))/4[n^(2)-(n-1)^(2)]`
`=1/4(n+1)^(2)(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.86|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.87|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.84|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Statement 1: Sum of the series 1^3-2^3+3^3-4^3++11^3=378. - Statement 2: For any odd integer ngeq1,n^3-(n-1)^3++(-1)^(n-1)1^3=1/4(2n-1)(n+1)^2dot

Using the principle of mathematical induction , prove that for n in N , (1)/(n+1) + (1)/(n+2) + (1)/(n+3) + "……." + (1)/(3n+1) gt 1 .

If n be any integer, then n(n+1) (2n+1) is-

If n is a positive integer then using the indentiy (1+x)^(n)=(1+x)^(3)(1+x)^(n-3) , prove that ""^(n)C_(r)=""^(n-2)C_(r)+3*""^(n-3)C_(r-1)*""^(n-3)C_(r-2)+""^(n-3)C_(r-3)

Let a=3^(1//224)+1 and for all n ge 3 , let f(n)=""^(n)C_(0)a^(n-1)-""^(n)C_(1)a^(n-2)+""^(n)C_(2)a^(n-3)+...+(-1)^(n-1)*""^(n)C_(n-1)*a^(0). If the value of f(2016)+f(2017)= 3^(k) , the value of K is

Prove that n^n > 1, 3, 5,…………(2n - 1) .

If n is a positive integer and U_(n) = (3 + sqrt5)^(n) + (3 - sqrt5)^(n) , then prove that U_(n + 1) = 6U_(n) - 4U_(n -1), n ge 2

Show that, if n be any positive integer greater than 1, then (2^(3n) - 7n - 1) is divisible by 49.

For a positive integer n let a(n)=1+1/2+1/3+1/4+….+1/ ((2^n)-1) Then