Home
Class 12
MATHS
Prove that 2/(b+c)+2/(c+a)+2/(a+b)<<1/a+...

Prove that `2/(b+c)+2/(c+a)+2/(a+b)<<1/a+1/b+1/c ,w h e r ea ,b ,c>>0.`

Text Solution

Verified by Experts

Using A.M.`gt` H.M we get
`((1)/(a) + (1)/(b))/(2) gt (2)/(a + b), ((1)/(b) + (1)/(c ))/(2) gt (2)/(b + c)` and `((1)/(c c ) + (1)/(a))/(2) gt (2)/(c + a)`
Adding we get
`(1)/(a) + (1)/(b) + (1)/(c ) gt (2)/(a + b) + (2)/(b + c) + (2)/(a + c)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Prove that 2/(b+c)+2/(c+a)+2/(a+b)lt1/a+1/b+1/c ,where a ,b ,c>0.

In a triangle A B C prove that a/(a+c)+b/(c+a)+c/(a+b)<2

If (b-c)^(2), (c-a)^(2), (a-b)^(2) are in A.P. then prove that, (1)/(b-c), (1)/(c-a), (1)/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq3//2.

in any triangle ABC prove that (b-c)/acos^2(A/2)+(c-a)/(b)cos^2(B/2)+(a-b)(/c)cos^2(C/2)=0

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

If a, b, c, d are in continued proportion, then prove that (b -c)^(2) + (c -a)^(2) + (b-d)^(2) = (a -d)^(2)

Prove that (b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)

If a,b,c are in GP, Prove that, a(b^2+c^2) =c(a^2+b^2)

CENGAGE PUBLICATION-INEQUALITIES INVOLVING MEANS -Illustration
  1. Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

    Text Solution

    |

  2. Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c), where a,b,c gt 0 .

    Text Solution

    |

  3. Prove that 2/(b+c)+2/(c+a)+2/(a+b)<<1/a+1/b+1/c ,w h e r ea ,b ,c>>0.

    Text Solution

    |

  4. If a ,b , a n dc are distinct positive real numbers such that a+b+c=1,...

    Text Solution

    |

  5. Find the minimum value of 4^sin^(2x)+4^cos^(2x) .

    Text Solution

    |

  6. If (log)2(a+b)+(log)2(c+d)geq4. Then find the minimum value of the exp...

    Text Solution

    |

  7. Find all real solutions to 2^x+x^2=2-(1)/(2^x).

    Text Solution

    |

  8. Find all positive real solutions to 4x+(18)/(y)=14,2y+(9)/(z)=15,9z+(1...

    Text Solution

    |

  9. Let A;G;H be the arithmetic; geometric and harmonic means between thre...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  12. If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the grea...

    Text Solution

    |

  13. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  14. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  15. If S+a1+a2+a3++an ,a1 in R^+ for i=1ton , then prove that S/(S-a1)+S/...

    Text Solution

    |

  16. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  17. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  18. Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8. If ea...

    Text Solution

    |

  19. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  20. Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot

    Text Solution

    |