Home
Class 12
MATHS
Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1...

Prove that `1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot`

Text Solution

Verified by Experts

`1^(2) = 1`
`2^(2) = 2 + 2`
`3^(2) = 3 + 3 + 3`
`:.` Using weighted means
`(1 + (2 + 2) + (3 + 3 + 3) + ….. + (n + n + ….n "times"))/(1 + 2 + 3 + …..+ n)`
`ge (1^(1). 2^(2)……. N^(n))^((1)/(1 + 2 + 3 + … + n))`
`implies (1 + 2^(2) + 3^(2) + .... + n^(2))/((n(n + 1))/(2)) ge (1^(1) 2^(2)...... n^(n))^((2)/(n(n + 1)))`
`implies (n(n + 1)(2n + 1)/(6))/((n(n + 1))/(2)) ge (1^(1). 2^(2).... n^(n))^(n(n + 1))`
`implies (2n + 1)/(3) ge (1^(1) 2^(2) .... n^(2))^((2)/(n(n + 1))`
`implies 1^(1). 2^(2). 3^(3) .... n^(n) le ((2n + 1)/(3))^((n(n + 1))/(2))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Prove that 1^1xx2^2xx3^3xxxxn^nlt=[(2n+1)/3]^(n(n+1)/2),n in Ndot

By mathematical induction prove that, 1*2+2*2^(2)+3*2^(3)+ . . .+n*2^(n)=(n-1)*2^(n+1)+2,ninNN .

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

Prove that n^n > 1, 3, 5,…………(2n - 1) .

By principle of mathematical induction,prove that 1^(3)+2^(3)+3^(3)+ . . .. +n^(3)=[(n(n+1))/(2)]^(2) for all ninNN

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove by. mathematical induction : 1.2+2.2^2+3.2^3+...+n.2^n=(n-1)2^(n+1)+2,n in N

Prove that (2n!)/(n!)={1.3.5.....(2n-1)}2^n

CENGAGE PUBLICATION-INEQUALITIES INVOLVING MEANS -Illustration
  1. about to only mathematics

    Text Solution

    |

  2. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  3. If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the grea...

    Text Solution

    |

  4. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  5. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  6. If S+a1+a2+a3++an ,a1 in R^+ for i=1ton , then prove that S/(S-a1)+S/...

    Text Solution

    |

  7. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  8. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  9. Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8. If ea...

    Text Solution

    |

  10. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  11. Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot

    Text Solution

    |

  12. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  13. Find the maximum value of (7-x)^4(2+x)^5w h e nx lies between -2a n d7...

    Text Solution

    |

  14. Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1, whe...

    Text Solution

    |

  15. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  16. If m >1,n in N show that 1m+2m+2^(2m)+2^(3m)++2^(n m-m)> n^(i-m)(2^n-...

    Text Solution

    |

  17. Prove that in an acute angled triangle ABC , sec A+sec B +sec Cge 6.

    Text Solution

    |

  18. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  19. Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

    Text Solution

    |

  20. If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)2+(b+1//c)...

    Text Solution

    |