Home
Class 12
MATHS
Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a...

Prove that `(a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c`

Text Solution

Verified by Experts

We have to prove that
`a^(8) + b^(8) + c^(8) gt a^(2) b^(2) c^(2) (bc + ca + ab)`. Now
`(a^(8) + b^(8) + c^(8))/(3) gt ((a + b + c)/(3))^(8)`
or `(a^(8) + b^(8) + c^(8))/(3) gt ((a + b + c)/(3))^(6) ((a + b + c)/(3))^(2) gt [(abc)^(a//3)]^(6) [(a^(2) + b^(2) + c^(2) + 2ab + 2bc + 2ca)/(9)]`
`( :' A.M gt G.M)`
But `a^(2) + b^(8) + c^(2) gt ab + bc + ca`
So, `(a^(8) + b^(8) c^(8))/(3) gt a^(2) b^(2) c^(2) ((3ab + 3bc + 3ca))/(9))`
or `a^(8) + b^(8) + c^(8) gt a^(2) b^(2) c^(2) (ab + bc + ca)`
or `(a^(8) + b^(8) + c^(8))/(a^(3)b^(3)c^(3)) gt (ab + bc + ca)/(abc)`
or `(a^(5) + b^(8) + c^(8))/(a^(3) b^(3) c^(3)) gt (1)/(a) + (1)/(b) + (1)/(c )`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 2|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Comprehension|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a, b, c be in continued proportional, then prove that a^2 b^2 c^2 (1/a^3 + 1/b^3+1/c^3) =a^3 +b^3+c^3

If a,b,c, are in continued proportion then prove that a^2b^2c^2(1/a^3+1/b^3+1/c^3)= a^3+b^3+c^3 .

If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

If a : b = b : c , then prove that (abc(a+b+c)^(3))/((ab+bc+ca)^(3)) = 1

If a ,b ,c ,d are in G.P., then prove that (a^3+b^3)^(-1),(b^3+c^3)^(-1),(c^3+d^3)^(-1) are also in G.P.

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

If a,b,c be in H.P prove that (1/a+1/b-1/c)(1/b+1/c-1/a)=4/(ac)-3/b^2

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that log_(b^3)a xx log_(c^3)b xx log_(a^3)c = 1/27

CENGAGE PUBLICATION-INEQUALITIES INVOLVING MEANS -Illustration
  1. about to only mathematics

    Text Solution

    |

  2. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  3. If y z+z x+x y=12 ,w h e r ex ,y ,z are positive values, find the grea...

    Text Solution

    |

  4. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  5. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  6. If S+a1+a2+a3++an ,a1 in R^+ for i=1ton , then prove that S/(S-a1)+S/...

    Text Solution

    |

  7. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  8. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  9. Prove that (sec^4alpha)/(tan^2beta)+(sec^4beta)/(tan^2alpha)ge8. If ea...

    Text Solution

    |

  10. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  11. Prove that 1^1xx2^2xx3^3xxxxu nlt=[(2n+1)//3]n(n+1)//2,n in Ndot

    Text Solution

    |

  12. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  13. Find the maximum value of (7-x)^4(2+x)^5w h e nx lies between -2a n d7...

    Text Solution

    |

  14. Find the maximum value of xyz when (x)/(1)+(y^2)/(4)+(z^3)/(27)=1, whe...

    Text Solution

    |

  15. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  16. If m >1,n in N show that 1m+2m+2^(2m)+2^(3m)++2^(n m-m)> n^(i-m)(2^n-...

    Text Solution

    |

  17. Prove that in an acute angled triangle ABC , sec A+sec B +sec Cge 6.

    Text Solution

    |

  18. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  19. Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

    Text Solution

    |

  20. If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)2+(b+1//c)...

    Text Solution

    |