Home
Class 12
MATHS
If a(i) gt 0 (i = 1,2,3,….n) prove that ...

If `a_(i) gt 0` `(i = 1,2,3,….n)` prove that
`sum_(1 le i le j le n) sqrt(a_(i)a_(j)) le (n - 1)/(2) (a_(1) + a_(2) + …. + a_(n))`

Text Solution

Verified by Experts

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(a_(1)a_(3)) + (1)/(a_(3)a_(5)) +...+ (1)/(a_(2n-1).a_(2n+1)) = (n)/(a_(1)a_(2n+1))

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .

Let 0 lt A_(i) lt pi for i = 1,2,"……"n . Use mathematical induction to prove that sin A_(1) + sin A_(2)+ "….." + sin A_(n) le n sin ((A_(1) + A_(2) + "……" + A_(n))/(n)) where n ge 1 is a natural number. [You may use the fact that p sin x + (1-p) sin y le sin [px+(1-p)y] , where 0 le p le 1 and 0 le x , y le pi ]

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+ (1)/(sqrt(a_(n-1))+sqrt(a_(n))) = (n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

If a_(1), a_(2),…,a_(n) are in G.P., then show that (1)/(a_(1)^(2) - a_(2)^(2)) + (1)/(a_(2)^(2) - a_(3)^(2))+...+ (1)/(a_(n-1)^(2) - a_(n)^(2)) = (r^(2))/((1-r^(2))^(2))[(1)/(a_(n)^(2))-(1)/(a_(1)^(2))]