Home
Class 12
MATHS
Find the minimum value of 2^("sin" x) + ...

Find the minimum value of `2^("sin" x) + 2^("cos" x)`

Text Solution

Verified by Experts

The correct Answer is:
`2^(1 - (1)/(sqrt(2))`

Using `A.M. ge G.M`., we have
`2^(sin x)+2^(cosx) ge 2sqrt(2^sinx 2^cos x)=2sqrt(2^(sinx+cosx))`
Now we know that
`sin x +cos x ge -sqrt(2)`
`rArr 2^(sinx)+2^(cos x) ge 2sqrt(2^-sqrt(2))`
Hence, the minimum value of `2^sinx +2^cosx is 2(1(1)/(sqrt(2)))`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.2|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.3|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Example 8|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

The minimum value of 2^(sin x) + 2^(cos x) is

Find the minimum value of 2^(sin^2 theta) + 2^(cos^2 theta) .

The minimum value of (sin x+ cos x) is-

Find the minimum value of 4sin^(2)x+4cos^(2)x .

Find the maximum and minimum value of 6sinx cosx +4cos2x

Find the minimum value of |x-1|+|x-2|+|x-3|

Find the maximum and minimum values of x + sin 2x on [0, 2 pi ].

Let P(x)=((1-cos2x+sin2x)/(1+cos2x+sin2x))+((1+cotx+cot^2x)/(1+tanx+tan^2x)), then the minimum value of P(x) equal 1 (b) 2 (c) 4 (d) 16

Find the maximum and minimum values of : sinx+cos^(2)x((pi)/(2)ltxle(3pi)/(2))

Find the maximum and minimum values of : 1+2sinx+3cos^(2)x(0lexle(pi)/(2))