Home
Class 12
MATHS
Minimum value of (b+c)//a+(c+a)//b+(a+b)...

Minimum value of `(b+c)//a+(c+a)//b+(a+b)//c` (for real positive numbers `a ,b ,c)` is `1` `2` `4` `6`

A

1

B

2

C

3

D

6

Text Solution

Verified by Experts

The correct Answer is:
D

We have A.M `ge` G.M. Therefore,
`(a)/(b) + (b)/(a) + (b)/(c ) + (c )/(b) + (c )/(a) + (a)/(c ) ge 6`
or `(b + c)/(a) + (c + a)/(a) + (a + b)/(c ) ge 6`
Hence, the least value is 6.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

If a^(x)=b,b^(y)=c,c^(z)=a show that xyz =1 (a,b,c positive numbers)

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a, b and c are three positive real numbers, show that a^2 + b^2 + c^2 ge ab + bc + ca

If a, b and c are three positive real numbers, then show that a^3 + b^3 + c^3 > 3abc .

Three numbers a,b,c are such that (a^(2) +ab+b ^(2))/(ab +bc +ca) =(a+b)/(a+c), then the numbers b, a, c are in-

Prove that a^4+b^4+c^4>abc(a+b+c). [a,b,c are distinct positive real number]..

CENGAGE PUBLICATION-INEQUALITIES INVOLVING MEANS -EXERCISES (Single Correct answer type)
  1. The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbe...

    Text Solution

    |

  2. A rod of fixed length k slides along the coordinates axes, If it meets...

    Text Solution

    |

  3. The least value of 6tan^2varphi+54cot^2varphi+18 is 54 when A.M.geq GM...

    Text Solution

    |

  4. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  5. If y=3^(x-1)+3^(-x-1) , then the least value of y is 2 6 2//3 3//2

    Text Solution

    |

  6. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers...

    Text Solution

    |

  7. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  8. The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3...

    Text Solution

    |

  9. If l ,m ,n are the three positive roots of the equation x^3-a x^2+b x-...

    Text Solution

    |

  10. If positive numbers a ,b ,c are in H.P., then equation x^2-k x+2b^(101...

    Text Solution

    |

  11. For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a)(-oo...

    Text Solution

    |

  12. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  13. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(c)b+l...

    Text Solution

    |

  14. If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is alwa...

    Text Solution

    |

  15. If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always geq12 geq9 lt...

    Text Solution

    |

  16. If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c...

    Text Solution

    |

  17. If a ,b ,c ,d in R^+a n da ,b ,c are in H.P., then a+d > b+c a+b > c+...

    Text Solution

    |

  18. If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a...

    Text Solution

    |

  19. f(x)=((x-2)(x-1))/(x-3), forall xgt3. The minimum value of f(x) is equ...

    Text Solution

    |

  20. If a >0, then least value of (a^3+a^2+a+1)^2 is (a)64 a^2 (b)16 a^4 ...

    Text Solution

    |