Home
Class 12
MATHS
If a ,b ,c ,d in R^+ such that a+b+c=18...

If `a ,b ,c ,d in R^+` such that `a+b+c=18` , then the maximum value of `a^2b^3c^4` is equal to a. `2^(18)xx3^2` b. `2^(18)xx3^3` c. `2^(19)xx3^2` d. `2^(19)xx3^3`

A

`2^(18)xx3^(2)`

B

`2^(18)xx3^3`

C

`2^19 xx3^2`

D

`2^19xx3^3`

Text Solution

Verified by Experts

The correct Answer is:
D

`a + b + c = 18`
`implies 2 xx (a)/(2) + 3 xx (b)/(3) + 4 xx (c )/(4) = 18`
Using weighted A.M and G.M inequality, we get
`(2 xx (a)/(2) + 3 xx (b)/(3) + 4 xx (c )/(4))/(9) ge (((a)/(2))^(2) ((b)/(3))^(3) ((c )/(4))^(4))^(1//9)`
or `2^(9) ge (a^(2))/(2^(2)) xx (b^(2))/(3^(3)) xx (c^(4))/(4^(4))`
or ` a^(2) b^(3) c^(4) le 3^(3) xx 2^(19)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Linked comprehension type|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE PUBLICATION|Exercise Concept Application Eexercises 6.4|4 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE PUBLICATION|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If ab^2c^3,a^2b^3c^4,a^3b^4c^5 are in AP (a,b,cgt0) thgen the minimum value of a+b+c is

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

If a/2 = b/3 = c/4 = (2a - 3b + 4c)/p , then find the value of P .

If a+b+c=9,a^(2)+b^(2)+c^(2)=27 and a^(3)+b^(3)+c^(3)=81 then find the value of 3abc.

If a : b = 3 : 2 " and " b : c = 3 : 2 , then find the value of the ratio (a + b) : (b + c) .

If a+b+c=10,a^(2)+b^(2)+c^(2)=38 and a^(3)+b^(3)+c^(3)=160 then find the value of 3abc.

CENGAGE PUBLICATION-INEQUALITIES INVOLVING MEANS -EXERCISES (Single Correct answer type)
  1. The minimum value of (x^(4)+y^(4)+z^(2))/(xyz) for positive real numbe...

    Text Solution

    |

  2. A rod of fixed length k slides along the coordinates axes, If it meets...

    Text Solution

    |

  3. The least value of 6tan^2varphi+54cot^2varphi+18 is 54 when A.M.geq GM...

    Text Solution

    |

  4. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  5. If y=3^(x-1)+3^(-x-1) , then the least value of y is 2 6 2//3 3//2

    Text Solution

    |

  6. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers...

    Text Solution

    |

  7. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  8. The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3...

    Text Solution

    |

  9. If l ,m ,n are the three positive roots of the equation x^3-a x^2+b x-...

    Text Solution

    |

  10. If positive numbers a ,b ,c are in H.P., then equation x^2-k x+2b^(101...

    Text Solution

    |

  11. For x^2-(a+3)|x|-4=0 to have real solutions, the range of a is a)(-oo...

    Text Solution

    |

  12. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  13. If a,b,c,d in R^(+)-{1}, then the minimum value of log(d) a+ log(c)b+l...

    Text Solution

    |

  14. If a ,b ,c in R^+, t h e n(b c)/(b+c)+(a c)/(a+c)+(a b)/(a+b) is alwa...

    Text Solution

    |

  15. If a ,b ,c in R^+t h e n(a+b+c)(1/a+1/b+1/c) is always geq12 geq9 lt...

    Text Solution

    |

  16. If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c...

    Text Solution

    |

  17. If a ,b ,c ,d in R^+a n da ,b ,c are in H.P., then a+d > b+c a+b > c+...

    Text Solution

    |

  18. If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a...

    Text Solution

    |

  19. f(x)=((x-2)(x-1))/(x-3), forall xgt3. The minimum value of f(x) is equ...

    Text Solution

    |

  20. If a >0, then least value of (a^3+a^2+a+1)^2 is (a)64 a^2 (b)16 a^4 ...

    Text Solution

    |