Home
Class 8
MATHS
Factorise : (x ^(2) + y ^(2) - z ^(2)) ^...

Factorise : `(x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((x^2 + y^2 - z^2)^2 - 4x^2y^2\), we can follow these steps: ### Step 1: Recognize the Structure The expression resembles the difference of squares. We can rewrite it in the form \(a^2 - b^2\) where: - \(a = (x^2 + y^2 - z^2)\) - \(b = 2xy\) ### Step 2: Apply the Difference of Squares Formula Using the difference of squares formula \(a^2 - b^2 = (a + b)(a - b)\), we can factor the expression: \[ (x^2 + y^2 - z^2)^2 - (2xy)^2 = (x^2 + y^2 - z^2 + 2xy)(x^2 + y^2 - z^2 - 2xy) \] ### Step 3: Simplify Each Factor Now, we need to simplify each factor: 1. **First Factor**: \[ x^2 + y^2 - z^2 + 2xy = (x^2 + 2xy + y^2) - z^2 = (x + y)^2 - z^2 \] This can be factored further using the difference of squares: \[ (x + y + z)(x + y - z) \] 2. **Second Factor**: \[ x^2 + y^2 - z^2 - 2xy = (x^2 - 2xy + y^2) - z^2 = (x - y)^2 - z^2 \] This can also be factored further using the difference of squares: \[ (x - y + z)(x - y - z) \] ### Step 4: Combine the Factors Putting it all together, we have: \[ (x + y + z)(x + y - z)(x - y + z)(x - y - z) \] ### Final Answer Thus, the fully factored form of the expression \((x^2 + y^2 - z^2)^2 - 4x^2y^2\) is: \[ (x + y + z)(x + y - z)(x - y + z)(x - y - z) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise: 4x ^(2) + 9y^(2) + 12 xy

Factorise : 9x^(2) +y^(4) - 6xy^2 -z^(4)

Factorise: (x - 2y )^(2) + 4x - 8y

Factorise : 16 (2x - y) ^(2) - 24 (4x ^(2) - y ^(2) ) + 9 ( 2x + y) ^(2)

Add : x y ^(2) z ^(2)+ 3x ^(2) y ^(2) z - 4x ^(2)yz ^(2), - 9x ^(2) y ^(2) z + 3x y ^(2) z ^(2) + x ^(2) yz ^(2)

Factorise: 49 (2x + 3y) ^(2) - 70 ( 4x ^(2) - 9 y ^(2)) + 25 ( 2 x - 3y ) ^(2)