Home
Class 8
MATHS
Factorise : x ^(4) + x ^(2) y ^(2) + y ^...

Factorise `: x ^(4) + x ^(2) y ^(2) + y ^(4).`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^4 + x^2y^2 + y^4 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 + x^2y^2 + y^4 \] We can add and subtract \( x^2y^2 \) to help us factor the expression: \[ x^4 + 2x^2y^2 + y^4 - x^2y^2 \] ### Step 2: Group the terms Now we can group the first three terms and the last term: \[ (x^4 + 2x^2y^2 + y^4) - x^2y^2 \] ### Step 3: Recognize a perfect square The expression \( x^4 + 2x^2y^2 + y^4 \) can be recognized as a perfect square: \[ (x^2 + y^2)^2 \] Thus, we rewrite the expression: \[ (x^2 + y^2)^2 - x^2y^2 \] ### Step 4: Apply the difference of squares Now we have a difference of squares, which can be factored using the formula \( a^2 - b^2 = (a + b)(a - b) \): Let \( a = x^2 + y^2 \) and \( b = xy \). Therefore, we can write: \[ ((x^2 + y^2) + xy)((x^2 + y^2) - xy) \] ### Step 5: Write the final factorized form Thus, the factorized form of the expression \( x^4 + x^2y^2 + y^4 \) is: \[ (x^2 + y^2 + xy)(x^2 + y^2 - xy) \] ### Final Answer: The factorized expression is: \[ (x^2 + y^2 + xy)(x^2 + y^2 - xy) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factor x ^ (4) + x ^ (2) y ^ (2) + y ^ (4)

The factors of (x ^(4) - 7x ^(2) y ^(2) + y ^(4)) are

Factorise : 36x^(4) - 84x^(2)y^(2) +49y^(4)

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise: 3x ^(2) - 4x -4

Factorise : x^(4)-3x^(2)+2

Factorise: 4x ^(2) - y ^(2)+ 6y-9.

Factorise : (x ^(2) + y ^(2) - z ^(2)) ^(2) -4x ^(2) y ^(2)