Home
Class 8
MATHS
Factorise: (1)/(64) a ^(3) - (1)/(16) a ...

Factorise:` (1)/(64) a ^(3) - (1)/(16) a ^(2) b + (1)/(12) ab ^(2) - (1)/(27) b ^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( \frac{1}{64} a^3 - \frac{1}{16} a^2 b + \frac{1}{12} ab^2 - \frac{1}{27} b^3 \), we can follow these steps: ### Step 1: Rewrite the coefficients First, we can rewrite the coefficients in a more manageable form: \[ \frac{1}{64} = \left(\frac{1}{4}\right)^3, \quad \frac{1}{16} = \left(\frac{1}{4}\right)^2, \quad \frac{1}{12} = \frac{1}{12}, \quad \frac{1}{27} = \left(\frac{1}{3}\right)^3 \] Thus, we can rewrite the expression as: \[ \left(\frac{a}{4}\right)^3 - \left(\frac{a}{4}\right)^2 b + \frac{1}{12} ab^2 - \left(\frac{b}{3}\right)^3 \] ### Step 2: Identify the structure We notice that the expression resembles the form of \( A^3 - B^3 - 3A^2B + 3AB^2 \). We can set: \[ A = \frac{a}{4}, \quad B = \frac{b}{3} \] This allows us to rewrite the expression as: \[ A^3 - 3A^2B + 3AB^2 - B^3 \] ### Step 3: Apply the formula The expression can be factored using the identity: \[ A^3 - B^3 - 3AB(A - B) = (A - B)(A^2 + AB + B^2) \] Thus, we can factor our expression as: \[ \left(\frac{a}{4} - \frac{b}{3}\right)\left(\left(\frac{a}{4}\right)^2 + \left(\frac{a}{4}\right)\left(\frac{b}{3}\right) + \left(\frac{b}{3}\right)^2\right) \] ### Step 4: Simplify the factors Now we simplify the factors: 1. The first factor: \[ \frac{a}{4} - \frac{b}{3} = \frac{3a - 4b}{12} \] 2. The second factor: \[ \left(\frac{a}{4}\right)^2 + \left(\frac{a}{4}\right)\left(\frac{b}{3}\right) + \left(\frac{b}{3}\right)^2 = \frac{a^2}{16} + \frac{ab}{12} + \frac{b^2}{9} \] ### Final Result Thus, the completely factored form of the expression is: \[ \frac{1}{12} (3a - 4b) \left(\frac{a^2}{16} + \frac{ab}{12} + \frac{b^2}{9}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise 12a^(3) b^(3) - 3ab .

Factorise: 27 a ^(3) - b ^(3) - 1 - 9 ab

Factorise :1-64a^(3)-12a+48a^(2)

Factorise 1+(27)/(125)a^3+(9a)/(5)+(27a^2)/(25)

Factorise: ab (c ^(2) +1) + c (a ^(2) + b ^(2))

Factorise : a^(3)-b^(3)+1+3ab

Factorize: 64a^(3)-27b^(3)-144a^(2)b+108ab^(2)

Factorise (i) 1+64x^(3) " " (ii) a^(3)-2sqrt(2)b^(3)

Factorise : 1 + 2 ab - (a ^(2) + b ^(2))