Home
Class 8
MATHS
Factorise: 2 sqrt2 x ^(3) + 3 sqrt3 y ^(...

Factorise:` 2 sqrt2 x ^(3) + 3 sqrt3 y ^(3) + sqrt5 (5 -3 sqrt6 xy)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 2 \sqrt{2} x^3 + 3 \sqrt{3} y^3 + \sqrt{5} (5 - 3 \sqrt{6} xy) \), we will follow these steps: ### Step 1: Distribute the \(\sqrt{5}\) First, we need to distribute \(\sqrt{5}\) in the expression: \[ \sqrt{5} (5 - 3 \sqrt{6} xy) = 5\sqrt{5} - 3\sqrt{30} xy \] Now, we can rewrite the expression: \[ 2 \sqrt{2} x^3 + 3 \sqrt{3} y^3 + 5\sqrt{5} - 3\sqrt{30} xy \] ### Step 2: Rearrange the terms Next, let's rearrange the terms for clarity: \[ 2 \sqrt{2} x^3 - 3\sqrt{30} xy + 3 \sqrt{3} y^3 + 5\sqrt{5} \] ### Step 3: Group the terms Now, we can group the terms in a way that might reveal a common factor: \[ (2 \sqrt{2} x^3 + 3 \sqrt{3} y^3) + (5\sqrt{5} - 3\sqrt{30} xy) \] ### Step 4: Factor by grouping We can factor out common terms from the grouped expressions. The first group can be factored as: \[ \sqrt{2} (2x^3) + \sqrt{3} (3y^3) = \sqrt{6} (x^3 + y^3) \] The second group can be rewritten as: \[ 5\sqrt{5} - 3\sqrt{30} xy = \sqrt{5} (5 - 3\sqrt{6} xy) \] ### Step 5: Combine the factors Now, we can combine the factored terms: \[ \sqrt{2} (2x^3 + 3\sqrt{3} y^3) + \sqrt{5} (5 - 3\sqrt{6} xy) \] ### Step 6: Final factorization The expression can be factored as: \[ \sqrt{2}(x^3 + y^3) + \sqrt{5}(5 - 3\sqrt{6}xy) \] This is the final factorized form of the expression.
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorize : 2sqrt(2)x^(3)+3sqrt(3)y^(3)+sqrt(5)(5-3sqrt(6)xy)

Factorise sqrt(3)x^(2)+10x+3sqrt(3)

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

If 5 sqrt5 x^3-81 sqrt3 y^3 div sqrt5 x-3 sqrt3 y=Ax^2+By^2+Cxy , then the value of (6A+B-sqrt15 C) is: यदि 5 sqrt5 x^3-81 sqrt3 y^3 div sqrt5 x-3 sqrt3 y=Ax^2+By^2+Cxy है, तो (6A+B-sqrt15 C) का मान ज्ञात करें |

If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy) , then the value of (3A + B -sqrt15 C) is: यदि (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy) ,तो (3A + B -sqrt15 C) का मान ज्ञात करें:

If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy) , then the value of (3A - B -sqrt15 C) is: यदि (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy) ,तो (3A - B -sqrt15 C) का मान ज्ञात करें |

If 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) , then the value of sqrt((B^2+C^2-A)) is: यदि 40 sqrt5 x^3-3 sqrt3 y^3=(2 sqrt5x- sqrt3y)(Ax^2+Cy^2+Bxy) है, तो sqrt((B^2+C^2-A)) का मान ज्ञात करें |