Home
Class 8
MATHS
Factorise x ^(8) + x ^(4) +1...

Factorise `x ^(8) + x ^(4) +1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^8 + x^4 + 1 \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ x^8 + x^4 + 1 \] Notice that \( x^8 \) can be rewritten as \( (x^4)^2 \). This gives us: \[ (x^4)^2 + x^4 + 1 \] ### Step 2: Use a Substitution Let \( y = x^4 \). Then, the expression becomes: \[ y^2 + y + 1 \] ### Step 3: Factor the Quadratic Expression The expression \( y^2 + y + 1 \) can be factored using the formula for the sum of cubes. We recognize that: \[ y^2 + y + 1 = \frac{y^3 - 1}{y - 1} \quad \text{(for } y \neq 1\text{)} \] This can be factored as: \[ y^2 + y + 1 = (y - \omega)(y - \omega^2) \] where \( \omega = e^{2\pi i / 3} \) is a primitive cube root of unity. ### Step 4: Substitute Back Now we substitute back \( y = x^4 \): \[ (x^4 - \omega)(x^4 - \omega^2) \] ### Step 5: Final Expression Thus, the factorization of the original expression \( x^8 + x^4 + 1 \) is: \[ (x^4 - \omega)(x^4 - \omega^2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET-8 |10 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: x ^(8) - x ^(4) - 72

Factorise 4x ^(4) + 3x ^(2) +1

Factorise x^(4) + x^(2) + 1 .

Factorise: 3x ^(2) - 4x -4

Factorise : x ^(4) + x ^(2) y ^(2) + y ^(4).

Factorise : x^(4)-1

Factorise: x^(2) + x-56

Factorise: x ^(2) + x - 132

Factorise: x ^(2) - 4x -12