Home
Class 8
MATHS
Factors of (2x ^(2) - 3x - 2) ( 2x ^(2) ...

Factors of `(2x ^(2) - 3x - 2) ( 2x ^(2) - 3x) - 63` are :

A

`(x-3) ( 2x + 3) ( x-1) ( x -7)`

B

` (x +3) (2x + 3) ( 2x ^(2) - 1) (x - 7)`

C

`(x + 3) ( 2x + 3) ( 2x ^(2) - 2x + 7)`

D

`(x-3) (2x + 3) ( 2x ^(2) - 3x + 7)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( (2x^2 - 3x - 2)(2x^2 - 3x) - 63 \), we will follow these steps: ### Step 1: Set up the expression We start with the expression: \[ (2x^2 - 3x - 2)(2x^2 - 3x) - 63 \] ### Step 2: Substitute a variable Let \( a = 2x^2 - 3x \). Then, we can rewrite the expression as: \[ (a - 2)(a) - 63 \] ### Step 3: Expand the expression Now, we expand the expression: \[ a(a - 2) - 63 = a^2 - 2a - 63 \] ### Step 4: Factor the quadratic expression Next, we need to factor \( a^2 - 2a - 63 \). We look for two numbers that multiply to \(-63\) and add to \(-2\). The numbers \(-9\) and \(7\) work: \[ a^2 - 9a + 7a - 63 \] Grouping the terms: \[ a(a - 9) + 7(a - 9) \] Factoring out the common term: \[ (a - 9)(a + 7) \] ### Step 5: Substitute back the value of \( a \) Now we substitute back \( a = 2x^2 - 3x \): \[ (2x^2 - 3x - 9)(2x^2 - 3x + 7) \] ### Step 6: Final expression Thus, the factors of the original expression are: \[ (2x^2 - 3x - 9)(2x^2 - 3x + 7) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factors of 2x^2 + 7x + 3 are

The factors of ( 2x ^(3) + 19 x ^(2) + 38 x + 21) are

Factorize x^(2)y+2xy-3x-6

Factorize 3x^(2)-x-4