Home
Class 8
MATHS
The factors of (2x ^(2) - x - 6) ^(2) - ...

The factors of `(2x ^(2) - x - 6) ^(2) - ( 2x ^(2) - 9x + 10)^(2)` are:

A

`8 (x -2) (2x -1) ^(2)`

B

`16 (x -2) ^(2) (2x -1)`

C

`16 (x - 2) ( 2x -1)`

D

`16 (x -2) ^(2) (2x -1) ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \((2x^2 - x - 6)^2 - (2x^2 - 9x + 10)^2\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: Let \(a = 2x^2 - x - 6\) and \(b = 2x^2 - 9x + 10\). 2. **Apply the difference of squares formula**: We can rewrite the expression as: \[ (2x^2 - x - 6)^2 - (2x^2 - 9x + 10)^2 = (a + b)(a - b) \] 3. **Calculate \(a + b\)**: \[ a + b = (2x^2 - x - 6) + (2x^2 - 9x + 10) \] Combine like terms: \[ = 2x^2 + 2x^2 - x - 9x - 6 + 10 = 4x^2 - 10x + 4 \] 4. **Calculate \(a - b\)**: \[ a - b = (2x^2 - x - 6) - (2x^2 - 9x + 10) \] Distributing the negative sign: \[ = 2x^2 - x - 6 - 2x^2 + 9x - 10 = 8x - 16 \] 5. **Factor out the common terms**: We can factor \(4\) from \(4x^2 - 10x + 4\): \[ = 4(x^2 - \frac{10}{4}x + 1) = 4(x^2 - \frac{5}{2}x + 1) \] And factor \(8\) from \(8x - 16\): \[ = 8(x - 2) \] 6. **Combine the factors**: Now we have: \[ (4(x^2 - \frac{5}{2}x + 1))(8(x - 2)) \] Multiplying the constants gives: \[ 32(x^2 - \frac{5}{2}x + 1)(x - 2) \] 7. **Final factorization**: The final factorization of the original expression is: \[ 32(x^2 - \frac{5}{2}x + 1)(x - 2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Factorise: 2x^(2) + 9x + 10

Factorize : 2x^(2)-8x+6

Factorize 6x^(2) + x -2

The factors of x^(2) + 8x +12 are A. (x+6) (x+2) B. (x-6) (x +2) C. (x-4)^(2) D. (x+6) (x-2)

Factorize 9x ^ (2) -4y ^ (2) -6x + 4y