Home
Class 8
MATHS
The factors of (12 x - 8y) (a - 2b) + ...

The factors of
`(12 x - 8y) (a - 2b) + ( 6b - 2a) ( 3x - 2y)` are :

A

`(3x + 2y) ( a -2b)`

B

`2 ( 3x - 2y) (a - b)`

C

`(3x -2y) (a+ 2b)`

D

`(3x + 2y) (a + 2b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \((12x - 8y)(a - 2b) + (6b - 2a)(3x - 2y)\), we will follow these steps: ### Step 1: Identify Common Factors First, we notice that both terms of the expression have a common factor. The first term is \((12x - 8y)(a - 2b)\) and the second term is \((6b - 2a)(3x - 2y)\). ### Step 2: Factor Out Common Terms We can factor out the common term \((3x - 2y)\) from both parts of the expression. \[ (12x - 8y)(a - 2b) + (6b - 2a)(3x - 2y) = (3x - 2y) \left( \frac{(12x - 8y)(a - 2b)}{(3x - 2y)} + \frac{(6b - 2a)(3x - 2y)}{(3x - 2y)} \right) \] ### Step 3: Simplify the Expression Now we simplify the remaining expression. 1. The first term simplifies to \(4(a - 2b)\) because \(12x - 8y = 4(3x - 2y)\). 2. The second term simplifies to \((6b - 2a)\). So, we have: \[ (3x - 2y) \left( 4(a - 2b) + (6b - 2a) \right) \] ### Step 4: Combine Like Terms Now we combine the terms inside the parentheses: \[ 4a - 8b + 6b - 2a = (4a - 2a) + (-8b + 6b) = 2a - 2b \] ### Step 5: Factor Out the Common Factor Now we can factor out the common factor of 2: \[ 2(a - b) \] ### Final Expression Putting it all together, we have: \[ (3x - 2y)(2(a - b)) \] Thus, the factors of the given expression are: \[ 2(3x - 2y)(a - b) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Subtract: (i) 5a + 7b - 2c from 3a - 7b + 4c (ii) a - 2b - 3c from -2a + 5b - 4c (iii) 5x^(2) - 3xy + y^(2) from 7x^(2) - 2xy - 4y^(2) (iv) 6x^(3) - 7x^(2) + 5x - 3 from 4 - 5x + 6x^(2) - 8x^(3) (v) x^(3) + 2x^(2) y + 6xy^(2) - y^(3) from y^(3) - 3xy^(2) - 4x^(2) (vi) -11 x^(2) y^(2) + 7xy - 6 from 9x^(2) y^(2) - 6xy + 9 (vii) -2a + b + 6d from 5a - 2b - 3c

Factorize: 12 (2x-3y) ^ (2) -16 (3y-2x)

(x + y - 8) /( 2 ) = ( x + 2y - 14 ) /( 3) = ( 3x + y - 12)/( 11)

The factors of x^(2)+4y^(2)+4y-4xy-2x-8 are (a)(x-2y-4)(x-2y+2)(b)(x-y+2)(x-4y-4)(c)(x+2y-4)(x+2y+2) (d) none of these

x ^ (2) + y ^ (2) + 1, x ^ (2) + 2y ^ (2) + 3, x ^ (2) + 3y ^ (2) + 4y ^ (2) + 2,2y ^ (2) + 6.3y ^ (2) + 8y ^ (2) + 1.2y ^ (2) + 3.3y ^ (2) +4] |

Subtract : 6x ^(2) - 4 xy + 5y ^(2) from 8y ^(2) + 6 xy - 3x ^(2)