Home
Class 8
MATHS
The factors of 1- (a ^(2) + b ^(2)) + a ...

The factors of `1- (a ^(2) + b ^(2)) + a ^(2) b ^(2)` are :

A

`(1 +a ) (1-a ) (1 + b ^(2))`

B

`(1 + a ^(2)) (1 + b ^(2))`

C

`(1 + a ^(2)) (1- b) (1 + b)`

D

`(1 - a) (1 + a) (1- b) (1 + b)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \(1 - (a^2 + b^2) + a^2b^2\), we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ 1 - (a^2 + b^2) + a^2b^2 \] This can be rewritten as: \[ 1 - a^2 - b^2 + a^2b^2 \] ### Step 2: Rearrange the terms Rearranging the terms gives us: \[ 1 - a^2 + a^2b^2 - b^2 \] ### Step 3: Group the terms Now, we can group the terms: \[ (1 - a^2) + (a^2b^2 - b^2) \] ### Step 4: Factor out common terms From the first group, we can factor out \(1 - a^2\): \[ 1 - a^2 = (1 - a)(1 + a) \] From the second group, we can factor out \(b^2\): \[ a^2b^2 - b^2 = b^2(a^2 - 1) = b^2(1 - a)(1 + a) \] ### Step 5: Combine the factors Now, we can combine the factors: \[ (1 - a)(1 + a) + b^2(1 - a)(1 + a) \] Factoring out \((1 - a)(1 + a)\) gives: \[ (1 - a)(1 + a)(1 + b^2) \] ### Final Factored Form Thus, the final factored form of the expression \(1 - (a^2 + b^2) + a^2b^2\) is: \[ (1 - a)(1 + a)(1 + b^2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION OF ALGEBRAIC EXPRESSIONS

    S CHAND IIT JEE FOUNDATION|Exercise QUESTION BANK-8 |30 Videos
  • EXPONENTS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSMENT SHEET|10 Videos
  • FRACTIONS AND DECIMALS

    S CHAND IIT JEE FOUNDATION|Exercise SELF ASSESSEMENT SHEET|10 Videos

Similar Questions

Explore conceptually related problems

Sum of the factors of 4 b ^(2) c ^(2) - (b ^(2) + c ^(2)- a ^(2)) ^(2) is

Common factor of 12 a^(2) b ^(2) + 4 ab ^(2) - 32 is .

The factors of a ^(2) - 2 ab + b ^(2) are (a+b) and (a +b). True or false.

One of the factors of a^(3) - b^(3) - a^(2)b + ab^(2) + a^(2) - b^(2) is

Find the factors of a^(2) (b+c) + b^(2) (c +a) + c^(2) (a +b) +2abc

A factor of a^(4) -11 a^(2) b^(2) +b^(4) is