Home
Class 7
MATHS
Simplify : 3(4x^(2)-5x)+4(3x^(2)+5x) and...

Simplify : `3(4x^(2)-5x)+4(3x^(2)+5x)` and find the value for
`x= 3`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(3(4x^2 - 5x) + 4(3x^2 + 5x)\) and find the value for \(x = 3\), we will follow these steps: ### Step 1: Distribute the coefficients We start by distributing the coefficients in front of the parentheses. \[ 3(4x^2 - 5x) = 3 \cdot 4x^2 - 3 \cdot 5x = 12x^2 - 15x \] \[ 4(3x^2 + 5x) = 4 \cdot 3x^2 + 4 \cdot 5x = 12x^2 + 20x \] ### Step 2: Combine the results Now we combine the results from both distributions: \[ 12x^2 - 15x + 12x^2 + 20x \] ### Step 3: Combine like terms Next, we combine like terms: - Combine \(12x^2 + 12x^2\): \[ 12x^2 + 12x^2 = 24x^2 \] - Combine \(-15x + 20x\): \[ -15x + 20x = 5x \] Putting it all together, we have: \[ 24x^2 + 5x \] ### Step 4: Substitute \(x = 3\) Now we substitute \(x = 3\) into the simplified expression: \[ 24(3^2) + 5(3) \] Calculating \(3^2\): \[ 3^2 = 9 \] Now substituting: \[ 24(9) + 5(3) = 216 + 15 \] ### Step 5: Add the results Finally, we add the two results together: \[ 216 + 15 = 231 \] ### Final Answer Thus, the value of the expression when \(x = 3\) is: \[ \boxed{231} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (LONG ANSWER TYPE)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Simplify : 3(4x^(2)-5x)+4(3x^(2)+5x) and find the value for x= (1)/(2)

Simplify: (2x^(2)+3x-5)(3x^(2)-5x+4)

Find the value of x: 5x+2x+1 = 3x+4

Simplify: x^(2)-3x+5-(1)/(2)(3x^(2)-5x+7)

Simplify: (5-x)(3-2x)(4-3x)

Simplify : 9x^(4)+(2x^(3)-5x^(4))-5x^(3)-(x^(4)-3x^(2)) and find its value for x= -2 .

Simplify: (x^(2)-3x+2)(5x-2)-(3x^(2)+4x-5)(2x-1)

Simplify: (5x-3)(x+2)-(2x+5)(4x-3)

Simplify: (3x^(3)-4x^(2)+5)-(2x^(3)-2x^(2)+3)

If 2x-(3)/(2)=5x+(3)/(4), then find the value of x