Home
Class 7
MATHS
Subtract 4(-ac+4bc+c^(2)) from 3(a^(2)+a...

Subtract `4(-ac+4bc+c^(2))` from `3(a^(2)+ab+ac)-5(ab-b^(2)+bc)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting \( 4(-ac + 4bc + c^2) \) from \( 3(a^2 + ab + ac) - 5(ab - b^2 + bc) \), we will follow these steps: ### Step 1: Simplify the expression \( 3(a^2 + ab + ac) \) First, we distribute the 3 across the terms inside the parentheses: \[ 3(a^2 + ab + ac) = 3a^2 + 3ab + 3ac \] **Hint:** When distributing, multiply each term inside the parentheses by the number outside. ### Step 2: Simplify the expression \( -5(ab - b^2 + bc) \) Next, we distribute the -5 across the terms inside the parentheses: \[ -5(ab - b^2 + bc) = -5ab + 5b^2 - 5bc \] **Hint:** Remember that distributing a negative number changes the signs of the terms inside the parentheses. ### Step 3: Combine the results from Steps 1 and 2 Now we combine the two simplified expressions: \[ 3a^2 + 3ab + 3ac - 5ab + 5b^2 - 5bc \] Combine like terms: - For \( ab \): \( 3ab - 5ab = -2ab \) - The other terms remain the same. So we have: \[ 3a^2 - 2ab + 3ac + 5b^2 - 5bc \] **Hint:** Group similar terms together to simplify the expression. ### Step 4: Rewrite the expression to be subtracted Now we need to rewrite the expression \( 4(-ac + 4bc + c^2) \): Distributing the 4 gives: \[ 4(-ac + 4bc + c^2) = -4ac + 16bc + 4c^2 \] **Hint:** Again, remember to distribute carefully, paying attention to the signs. ### Step 5: Subtract the second expression from the first Now we subtract \( -4ac + 16bc + 4c^2 \) from \( 3a^2 - 2ab + 3ac + 5b^2 - 5bc \): \[ (3a^2 - 2ab + 3ac + 5b^2 - 5bc) - (-4ac + 16bc + 4c^2) \] This becomes: \[ 3a^2 - 2ab + 3ac + 5b^2 - 5bc + 4ac - 16bc - 4c^2 \] ### Step 6: Combine like terms again Now we combine the like terms: - For \( ac \): \( 3ac + 4ac = 7ac \) - For \( bc \): \( -5bc - 16bc = -21bc \) - The other terms remain the same. So we have: \[ 3a^2 - 2ab + 7ac + 5b^2 - 21bc - 4c^2 \] ### Final Answer Thus, the final result after performing the subtraction is: \[ 3a^2 - 2ab + 7ac + 5b^2 - 21bc - 4c^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (LONG ANSWER TYPE)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

Subtract 2(ab+bc+ca) " from " -ab-bc-ca .

Subtract : 2 ab + 5 bc - 7 ac from 5 ab - 2 bc - 2 ac + 10 abc

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then

a ^(2) + bc + ab + ac= ?

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?