Home
Class 7
MATHS
Subtract 4p^(2)q+pq^(2)-3pq+7q-8p-10 fro...

Subtract `4p^(2)q+pq^(2)-3pq+7q-8p-10` from `5p^(2)q-2pq^(2)+5pq-11q-3p+28`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of subtracting \(4p^2q + pq^2 - 3pq + 7q - 8p - 10\) from \(5p^2q - 2pq^2 + 5pq - 11q - 3p + 28\), we will follow these steps: ### Step 1: Write down the expressions We have two expressions: 1. \(5p^2q - 2pq^2 + 5pq - 11q - 3p + 28\) 2. \(4p^2q + pq^2 - 3pq + 7q - 8p - 10\) We need to subtract the second expression from the first. ### Step 2: Rewrite the subtraction To subtract the second expression from the first, we can rewrite it as: \[ (5p^2q - 2pq^2 + 5pq - 11q - 3p + 28) - (4p^2q + pq^2 - 3pq + 7q - 8p - 10) \] ### Step 3: Distribute the negative sign We will distribute the negative sign across the second expression: \[ 5p^2q - 2pq^2 + 5pq - 11q - 3p + 28 - 4p^2q - pq^2 + 3pq - 7q + 8p + 10 \] ### Step 4: Combine like terms Now we will combine the like terms: 1. For \(p^2q\): \[ 5p^2q - 4p^2q = 1p^2q \] 2. For \(pq^2\): \[ -2pq^2 - pq^2 = -3pq^2 \] 3. For \(pq\): \[ 5pq + 3pq = 8pq \] 4. For \(q\): \[ -11q - 7q = -18q \] 5. For \(p\): \[ -3p + 8p = 5p \] 6. For the constant: \[ 28 + 10 = 38 \] ### Step 5: Write the final expression Combining all the results, we get: \[ p^2q - 3pq^2 + 8pq - 18q + 5p + 38 \] ### Final Answer: \[ p^2q - 3pq^2 + 8pq - 18q + 5p + 38 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (LONG ANSWER TYPE)|5 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (VERY SHORT ANSWER TYPE)|10 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

(a) Subtract 4a-7ab+3b+12 from 12a-9ab+5b(r) Subtract 3xy+5yz-7zx from 5xy-2yx+10xyz( ij ) Subtract 4p^(2)q-3pq+5pq^(2)-8p+7q-10 from 18-3p-11q+5pq-2pq^(2)+5p^(2)q

Subtract: 4pq - 5a^(2) - 3p^(2) "from" 5p^(2) + 3q^(2) - pq

(p-q)^(2)+4pq

Add : 6p^(2)q - 5pq^(2) -3pq, 8pq^(2)+2p^(2)q -2pq

Subtract 3pq(p-q)0m2pq(p+q)

Subtract 3pq(p-q) from 2pq(p+q)

{(p^(2)+3px+3pq+9qx)(p-3q)}-:(p^(2)-9q^(2))

Add : 3p^(2)q^(2) - 4pq + 5, - 10p^(2) q^(2), 15 + 9pq + 7p^(2)q^(2)

x^2-qx-p^2-5pq+6q^2=

pq ^(2) + q (p -1) -1= ?