Home
Class 7
MATHS
Find the sum of 24(x^(2)-2x^(3))" and "-...

Find the sum of `24(x^(2)-2x^(3))" and "-3(xy^(2)+y^(3))` and evaluate their sum at `x= (1)/(2)" and "y= 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the two algebraic expressions and then evaluate that sum at given values of \( x \) and \( y \). ### Step 1: Write down the expressions The two expressions we need to sum are: 1. \( 24(x^2 - 2x^3) \) 2. \( -3(xy^2 + y^3) \) ### Step 2: Expand the expressions We will first expand both expressions: 1. For \( 24(x^2 - 2x^3) \): \[ 24x^2 - 48x^3 \] 2. For \( -3(xy^2 + y^3) \): \[ -3xy^2 - 3y^3 \] ### Step 3: Combine the expanded expressions Now, we combine the two expanded expressions: \[ 24x^2 - 48x^3 - 3xy^2 - 3y^3 \] ### Step 4: Substitute the values of \( x \) and \( y \) We need to evaluate the expression at \( x = \frac{1}{2} \) and \( y = 2 \): \[ 24\left(\frac{1}{2}\right)^2 - 48\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)(2^2) - 3(2^3) \] ### Step 5: Calculate each term 1. Calculate \( 24\left(\frac{1}{2}\right)^2 \): \[ 24 \cdot \frac{1}{4} = 6 \] 2. Calculate \( -48\left(\frac{1}{2}\right)^3 \): \[ -48 \cdot \frac{1}{8} = -6 \] 3. Calculate \( -3\left(\frac{1}{2}\right)(2^2) \): \[ -3 \cdot \frac{1}{2} \cdot 4 = -6 \] 4. Calculate \( -3(2^3) \): \[ -3 \cdot 8 = -24 \] ### Step 6: Combine all the results Now we combine all the calculated terms: \[ 6 - 6 - 6 - 24 \] ### Step 7: Simplify the expression Combine the terms: \[ 6 - 6 = 0 \\ 0 - 6 = -6 \\ -6 - 24 = -30 \] Thus, the final result is: \[ \text{The sum evaluated at } x = \frac{1}{2} \text{ and } y = 2 \text{ is } -30. \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (INTEGER/NUMERICAL VALUE TYPE)|10 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|10 Videos
  • ALGEBRAIC EXPRESSIONS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (SHORT ANSWER TYPE)|13 Videos
  • COMPARING QUANTITIES

    MTG IIT JEE FOUNDATION|Exercise Olympaid/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

Subtract the sum of 7x^(2) - 4y^(2) " and " 4x^(2) + 3xy - 4y^(2) from the sum of 5x^(2) - 3xy - y^(2) "and " x^(2) + 2xy - 2y^(2) .

[" IS find the Product of a) (x^(2)+3y^(2))(x^(2)+xy)

Find the product: (x+y)(2x-5y+3xy)

Find the products: (x+3y)(x^(2)-3xy+9y^(2))

If x=2,y=1 then x^(4)+2x^(3)y-2xy^(3)-y^(4) is equal to

Sum the series: x(x+y)+x^(2)(x^(2)+y^(2))+x^(3)(x^(3)+y^(3)).... to n terms

Find HCF of x^(3) + 3x^(2) y + 2xy^(2) and x^(4) + 6x^(3)y + 8x^(2) y^(2)

Add x^2+2x y+y^2 to the sum of x^2-3y^2 and 2x^2-y^2+9.

If y^(3)-3xy^(2)=x^(3)+3x^(2)y, find (dy)/(dx)