Home
Class 12
MATHS
If g(x)=(f(x))/((x-a)(x-b)(x-c)), where ...

If `g(x)=(f(x))/((x-a)(x-b)(x-c)),` where f(x) is a polynomial of degree `lt3,` then prove that
`(dg(x))/(dx)=|{:(1,a,f(a)(x-a)^(-2)),(1,b,f(b)(x-b)^(-2)),(1,c,f(c)(x-c)^(-2)):} |divide|{:(a^(2),a,1),(b^(2),b,1),(c^(2),c,1):}|.`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise For Session 2|11 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Expansion of Determinant|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

If int(f(x))/(x^(3)-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3 and int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C . Then (2m+n) is

If f(a,b) =(f(b)-f(a))/(b-a) and f(a,b,c)=(f(b,c)-f(a,b))/(c-a) prove that f(a,b,c)=|{:(f(a),f(b),f(c)),(1,1,1),(a,b,c):}|-:|{:(1,1,1),(a,b,c),(a^(2),b^(2),c^(2)):}| .

If f(x)=|((x-a)^(4),(x-a)^(3),1),((x-b)^(4),(x-b)^(3),1),((x-c)^(4),(x-c)^(3),1)|" then "f'(x)=lambda.|((x-a)^(4),(x-a)^(2),1),((x-b)^(4),(x-b)^(2),1),((x-c)^(4),(x-c)^(2),1)| . The value of lambda is

if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+b+c) where a,b,c are all different then the determinant |{:(1,,1,,1),((x-a)^(2),,(x-b)^(2),,(x-c)^(2)),((x-b)(x-c),,(x-c)(x-a),,(x-a)(x-b)):}| vanishes when

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then(a+b+c) equals to …….

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

Let f (x) =(ax+b)/(x+1), lim_(x rarr 0)f(x)=2 and lim_(x to oo)f(x)=1 , Prove that f (- 2) = 0.