Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^(...

If `alpha,beta,gamma` are the roots of `x^(3)+2x^(2)-x-3=0` The value of `|{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}|` is equal to

A

A. 14

B

B. -2

C

C. 10

D

D. -14

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|37 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 . If a = alpha^(2)+beta^(2)+gamma^(2),b= alphabeta+betagamma+gammaalpha the value of |{:(a,b,b),(b,a,b),(b,b,a):}| is

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha, beta, gamma are the roots of the equatiion x^(3)-px^(2)+qx-r=0 find sumalpha^(2) beta

if alpha,beta,gamma are the roots of x^3-3x^2 +3x + 7 =0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

Let alpha,beta,gamma be the roots of x^(3)+2x^(2)-x-3=0 . If the absolute value of the expression (alpha-1)/(alpha+2)+(beta-1)/(beta+2)+(gamma-1)/(gamma+2) can be expressed as (m)/(n) where m and n are co-prime the value of |{:(m,n^(2)),(m-n,m+n):}| is

If alpha,beta,gamma are the cube roots of p, then for any x,y,z (x alpha + y beta + z gamma)/(x beta + y gamma + z alpha =

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha, beta, gamma, delta are the roots of the equation x^(4)+Ax^(3)+Bx^(2)+Cx+D=0 such that alpha beta= gamma delta=k and A,B,C,D are the roots of x^(4)-2x^(3)+4x^(2)+6x-21=0 such that A+B=0 The value of (alpha+beta)(gamma+delta) in terms of B and k is

If alpha, beta, gamma are the roots fo x^(3)-x^(2)+ax+b=0 and beta, gamma, delta are the roots of x^(3)-4x^(2)+mx+n=0 . If alpha, beta, gamma and delta are in A.P. with common difference d then