Home
Class 12
MATHS
Solve sin^(-1) x - cos^(-1) x = cos ^(-1...

Solve `sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2)`.

Text Solution

Verified by Experts

The correct Answer is:
`x = sqrt3/2`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1) x+ cos^(-1) x = sin^(-1) (3x -2)

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

Solve for x: sin^-1 x + sin^-1(1-x) = cos^-1x

Solve cos^(50) x- sin^(50)x=1

The number of integer x satisfying sin^(-1) |x -2| + cos^(-1) (1 -|3 -x|) = (pi)/(2) is

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y