Home
Class 12
MATHS
Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3...

Prove that `tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi`

Text Solution

Verified by Experts

The correct Answer is:
`pi`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that tan 1 > 1 > tan^-1 1.

Prove that tan^(-1) (1/5)+ tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = pi/4

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Prove that tan^-1(1/2) + tan^-1 (1/3) = pi/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^-1(3/4) + tan^-1(3/5)- tan^-1(8/19) = pi/4

Prove that : tan^-1(1/3) + tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/8) = pi/4

Prove that : tan^-1(1/2) + tan^-1(1/5) + tan^-1(1/8) = pi/4

Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A)=0