Home
Class 12
MATHS
If cos^(-1) x + cos^(-1) y + cos^(-1) z ...

If `cos^(-1) x + cos^(-1) y + cos^(-1) z = pi`, prove that `x^(2) + y^(2) + z^(2) + 2xyz = 1`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If y = cos(2 cos^(-1)x) , then prove that (1 - x^2)(d^2y)/(dx) -xdy/dx + 4y = 0

If y= (cos^-1 x)^2 , prove that: (1 - x^2 ) ((d^2y)/dx^2) - x(dy/dx) -2 = 0 .

Prove that cos4x = 2cos^2(2x) - 1