Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, sho...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=pi`, show that `x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)`

Text Solution

Verified by Experts

The correct Answer is:
`=2 ( x^(2) y^(2) + y^(2)z^(2)+z^(2)x^(2))`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

If sin^-1x + sin^-1 y + sin^-1z = (3pi)/2, then the value of x^9 + y^9 + z^9 - (1)/(x^9y^9z^9) is equal to

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

If x,y and z are real such that x+y+z=4, x^(2)+y^(2)+z^(2)=6 , x belongs to

Divide the given polynomial by the given monomial : 8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3) -: 4x^2y^2z^2

If xy + yz + zx = 1 , prove that : x/(1-x^2)+y/(1-y^2)+z/(1-z^2)= (4xyz)/((1-x^2)(1-y^2)(1-z^2)) .

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|= |(1+a x)^2(1+b x)^2(1+c x)^2(1+a y)^2(1+b y)^2(1+c y)^2(1+a z)^2(1+b z)^2(1+c z)^2|=2(b-c)(c-c)(a-b)xx(y-z)(z-x)(x-y)dot