Home
Class 12
MATHS
Sigma(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) ...

`Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) ` is

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to

The value of 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1)) is equal to

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

Evaluate the following (i) sin^(-1) ( sin 7)" "(ii) sin^(-1) ( sin(-5))

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

sin^(-1)(sin 3) + sin^(-1) ( sin 4) + sin^(-1) ( sin 5) when simplified reduces to

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

For x^2nenpi+1, n inN (the set of natural numbers), the integral intxsqrt((2sin(x^2-1)-sin2(x^2-1))/(2sin(x^2-1)+sin2(x^2-1))) dx is equal to (where c is a constant of integration)