Home
Class 12
MATHS
If f ( x) = cos^(-1) ( cos ( x + 1) ) "...

If ` f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2))`, then
`f(1) + g (1) = ( pi -1)`
`f (1) gt g(1)`
` f(2) gt g (2) `
`f(2) lt g (2)`

A

`f(1) + g (1) = ( pi -1)`

B

`f (1) gt g(1)`

C

` f(2) gt g (2) `

D

`f(2) lt g (2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

If f(x) = x+1 And g (X) = 2x, then f (g(x)) is equal to

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Which of the following pairs of function are identical? a. f(x)=e^(In sec^(-1)x) " and " g(x)=sec^(-1)x b. f(x)=tan(tan^(-1)x) " and " g(x)=cot(cot^(-1)x) c. f(x)=sgn(x) and g(x)=sgn(sgn(x)) d. f(x)=cot^(2)*cos^(2)x " and " g(x)=cot^(2)x-cos^(2)x

If f(x) = 3x + 2 & g(x) = -3x – 1. Find f(g(-3))

If f(x) = tan^-1x,g(x) = tan^-1((1+x)/(1-x)) fo |x| < 1, show that f' (x) = g' (x) and g(x) - f(x) = pi/4

Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) then g(x) is