Home
Class 12
MATHS
Let x(1) , x(2) , x(3) be the solution o...

Let `x_(1) , x_(2) , x_(3)` be the solution of `tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) "`
where ` x_1 < x_2 < x_3 ` , then
`2x_(1) + x_(2) + x_(3)^(2) ` is equal to

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Differentiate tan^(-1) ((3x - x^3)/(1 - 3x^2)) w.r.t. tan^(-1)((2x)/(1 - x^2))

Differentiate tan^(-1)(2x)/(1 - x^2) w.r.t. tan^(-1) x .

Differentiate tan^(-1)((2x)/(1 - x^2)) w.r.t. sin^(-1)((2x)/(1 + x^2))

Solve the following equation : tan^-1((1-x)/(1+x)) = (1/2)tan^-1x, (x>0)

Solve the following equations: tan^-1((1-x)/(1+x)) = 1/2 tan^-1 x, x > 0