Home
Class 12
MATHS
If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y...

If ` tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 "` and
`sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = (pi)/6 ` , then `( 5 sin^(-1) x)/( sin^(-1) y) ` is

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If x = tan^(-1) 1 - cos^(-1) ( - 1/2) + sin^(-1) 1/2 , y = cos (1/2 cos^(-1) (1/8)) , then

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

If sin^-1 x + sin^-1y = pi/2 , then value of cos^-1 x + cos^-1 y

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value x^(-2) + y^(-2) equals .

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is