Home
Class 12
MATHS
If tan^(-1) y = 4 tan^(-1) x (|x| lt tan...

If `tan^(-1) y = 4 tan^(-1) x (|x| lt tan (pi)/(8))`. Find y as an algebraic function of x, and, hence, prove that `tan pi//8` is a root of the equation `x^(4) - 6x^(2) + 1= 0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If tan^-1 2x + tan^-1 3x = pi/2 , then the value of x is equal to

If tan^-1 x + tan^-1 y = (4pi)/5 , then cot^-1 x + cot^-1 y equals

f(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

If tan^-1((x-1)/(x-2)) + tan((x+1)/(x+2)) = pi/4 , then find the value of 'x'.

If tan x = 3/4, pi lt x lt (3 pi)/2 , find the values of sin frac (x)(2), cos frac (x)(2) and tan frac (x)(2) .

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is

Find the value of tan(cos^-1x) and hence evaluate tan(cos^-1(8/17))

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

Solve the following equations: tan^-1(x+2) + tan^-1(x-2) = pi/4, x > 0