Home
Class 12
MATHS
Prove that tan^(-1) x + tan^(-1).(1)/(x)...

Prove that `tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)sqrtx = 1/2cos^(-1) ((1-x)/(1+x)), x in [0,1]

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4),xgt0

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx)) )=x/2, x lt pi .

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that tan2x=(2tanx)/(1-tan^2 x)

Solve the following equations: tan^-1 2 x + tan^-1 3x = pi/4, x > 0