Home
Class 12
MATHS
Let f: Rvec[0,pi/2) be defined by f(x)=t...

Let `f: Rvec[0,pi/2)` be defined by `f(x)=tan^(-1)(x^2+x+a)dot` Then the set of values of `a` for which `f` is onto is (a) `(0,oo)` (b) `[2,1]` (c) `[1/4]` (d) `[1/4,oo]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 7|7 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( x^(2) + x + a. Then set of value of a for which f(x) is onto is

Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5) . Then the set of values of x for which f(x)=0 is

Let f:R -> ( 0,(2pi)/3] defined as f(x) = cot^-1 (x^2-4x + alpha) Then the smallest integral value of alpha such that, f(x) is into function is

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x)dot As b varies, the range of m(b) is (a) [0,1] (b) (0,1/2] (c) [1/2,1] (d) (0,1]

If f:R rarr [pi/6,pi/2], f(x)=sin^(-1)((x^(2)-a)/(x^(2)+1)) is an onto function, the set of values a is

Let f: (-1, 1) rarr B be a function defined by (x)=tan^(-1) frac (2x)(1+x^2) , then f is both one-one and onto when B is the interval:

Let f:(0,oo) to vec R be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then

Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)) ,then 26 f'(1) is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

Let f : R rarr R be defined by f (x) = x^2 - 3x + 4 for all x in R , then f^-1 (2) is equal to

ARIHANT MATHS-INVERSE TRIGONOMETRIC FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. Let f(x)= cos^(-1) ((1-x^2)/(1+x^2))= 2 tan^(-1)x x ge 0 , =-2 tan^(-1...

    Text Solution

    |

  2. Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R. The function f(x) is continu...

    Text Solution

    |

  3. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  4. Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x. Then the sum of the max...

    Text Solution

    |

  5. If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4where a, b, c , a...

    Text Solution

    |

  6. Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

    Text Solution

    |

  7. The equation e^(sin^(-1)x)/pi=y/(log y) has

    Text Solution

    |

  8. Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assu...

    Text Solution

    |

  9. cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

    Text Solution

    |

  10. The maximum value of f(x)=tan^(-1)(((sqrt(12)-2)x^2)/(x^4+2x^2+3)) is

    Text Solution

    |

  11. If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then x=tan2^0 (b) x=tan4^0 x=tan1/4...

    Text Solution

    |

  12. If tan^(-1)(sin^2theta-2sintheta+3)+cot^(-1)(5^sec^(2y)+1)=pi/2, then ...

    Text Solution

    |

  13. The number of solution of the equation |tan^(-1)|x||=sqrt((x^(2)+1)^(2...

    Text Solution

    |

  14. For any real number x ge 1, the expression sec^(2)x ( tan^(-1)x) - ...

    Text Solution

    |

  15. Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( x^(2) + x +...

    Text Solution

    |

  16. The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-...

    Text Solution

    |

  17. The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

    Text Solution

    |

  18. Which one of the following statement is meaningless ?

    Text Solution

    |

  19. The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

    Text Solution

    |

  20. The number k is such that tan { arc tan (2) + arc tan (20 k) } = k. ...

    Text Solution

    |