Home
Class 12
MATHS
Statement I sin ^(-1)(1/sqrte) gt tan^(...

Statement I `sin ^(-1)(1/sqrte) gt tan^(-1)(1/sqrtpi)`
Statement II `sin^(-1) x gt tan^(-1) y " for " x gt y , AA x, y in (0,1)`

A

Statement I is True, Statement II is True, Statement II is a correct explanation for statement I

B

Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I

C

Statement I is True, Statement II is False

D

Statement I is False, Statement II is True.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise 6|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Statement I cosec^(-1)(1/2 +1/sqrt2) gt sec^(-1)(1/2+1/sqrt2) Statement II cosec^(-1) x gt sec^(-1) x", if " 1 le x lt sqrt2

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

If y = sin^-1x , then

solve sin^(-1) (sin 5) gt x^(2) - 4x

If sin^-1 x = y , then

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z