Home
Class 12
MATHS
Let tan^(-1) y = tan^(-1) x + tan^(-1) (...

Let `tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3)`. Then a value of y is

A

`(3x - x^(3))/(1 - 3x^(2))`

B

`(3x + x^(3))/(1 - 3x^(2))`

C

`(3x - x^(3))/(1 + 3x^(2))`

D

`(3x + x^(3))/(1 + 3x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise 7|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of y=tan^(-1)((2x)/(1-x^(2)))

Prove that : tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

If y = b tan^-1 {x/a + tan^-1 (y/x)}, find dy/dx

If tan^-1 x = y , then

Prove that 3 tan^-1 x = tan^-1(3x-x^3)/(1-3x^2), |x| < 1/sqrt3

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

tan^(-1) sqrt(x) = (1)/(2) cos^(-1) ((1-x)/(1+x)), x in [0, 1]