Home
Class 12
MATHS
If iz^(3) + z^(2) -z+i=0, then |z| is eq...

If `iz^(3) + z^(2) -z+i=0`, then `|z|` is equal to

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Assertion / Reason |2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If iz^(3)+z^(2)-z+i=0, where i=sqrt(-1) then |z| is equal to 1 (b) (1)/(2)(c)(1)/(4) (d) None of these

If z+sqrt(2)|z+1|+i=0, then z equals

If z=re^(i)theta then |e^(iz)| is equal to:

If z= 5e^(itheta), then |e^(iz)| is equal to