Home
Class 12
MATHS
If x, y, z are three distinct complex n...

If x, y, z are three distinct complex numbers and a, b, c are three + ive real numbers satisfying the relation
`(a)/( | y -z|) = (b)/(| z - x|) = (c)/( | x - y|) ` then
`(a^(2))/( y - z) + (b^(2))/( z - x) + (c^(2))/( x - y) = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given statement, we start with the relation provided: \[ \frac{a}{|y - z|} = \frac{b}{|z - x|} = \frac{c}{|x - y|} \] Let's denote this common ratio by \( k \). Thus, we can express \( a, b, c \) in terms of \( k \): \[ a = k |y - z|, \quad b = k |z - x|, \quad c = k |x - y| \] Next, we need to compute \( a^2, b^2, c^2 \): \[ a^2 = k^2 |y - z|^2, \quad b^2 = k^2 |z - x|^2, \quad c^2 = k^2 |x - y|^2 \] Now, substituting these into the expression we want to prove: \[ \frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} \] Substituting the values of \( a^2, b^2, c^2 \): \[ = \frac{k^2 |y - z|^2}{y - z} + \frac{k^2 |z - x|^2}{z - x} + \frac{k^2 |x - y|^2}{x - y} \] This simplifies to: \[ = k^2 \left( |y - z|^2 \cdot \frac{1}{y - z} + |z - x|^2 \cdot \frac{1}{z - x} + |x - y|^2 \cdot \frac{1}{x - y} \right) \] Using the property \( |z|^2 = z \cdot \overline{z} \), we can express \( |y - z|^2 \) as \( (y - z)(\overline{y - z}) \). Thus: \[ = k^2 \left( (y - z) \overline{(y - z)} \cdot \frac{1}{y - z} + (z - x) \overline{(z - x)} \cdot \frac{1}{z - x} + (x - y) \overline{(x - y)} \cdot \frac{1}{x - y} \right) \] This results in: \[ = k^2 \left( \overline{(y - z)} + \overline{(z - x)} + \overline{(x - y)} \right) \] Now, notice that the terms \( \overline{(y - z)} + \overline{(z - x)} + \overline{(x - y)} \) can be rearranged and simplified. Since \( x, y, z \) are distinct complex numbers, the sum of these terms will equal zero: \[ \overline{(y - z)} + \overline{(z - x)} + \overline{(x - y)} = 0 \] Thus, we conclude: \[ \frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = k^2 \cdot 0 = 0 \] This proves the required statement.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (M.C.Q)|111 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (True and False )|4 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Assertion / Reason |2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

For three distinct real numbers a,b,c, the number of real roots of the equation (x-a)^(3)+(y-b)^(3)+(z-c)^(3)=0

If x,y,z are three real numbers of the same sign then the value of (x)/(y)+(y)/(z)+(z)/(x) lies

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

If (a)/(x-a) + (b)/(y-b) + (c )/(z-c)=2 find (x)/(x-a) + (y)/(y-b) + (z)/(z-c) = ?