Home
Class 12
MATHS
ln ab-ln|b|=...

`ln ab-ln|b|=`

A

`ln a`

B

`ln|a|`

C

`-lna`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \ln(ab) - \ln|b| \), we can use the properties of logarithms. Here’s a step-by-step solution: ### Step 1: Apply the logarithmic property We know that the difference of logarithms can be expressed as the logarithm of a quotient. Therefore, we can write: \[ \ln(ab) - \ln|b| = \ln\left(\frac{ab}{|b|}\right) \] ### Step 2: Simplify the expression Next, we simplify the expression inside the logarithm. Since \( b \) can be either positive or negative, we can consider the absolute value: \[ \frac{ab}{|b|} = a \cdot \frac{b}{|b|} \] ### Step 3: Analyze the fraction The term \( \frac{b}{|b|} \) is equal to \( 1 \) if \( b > 0 \) and \( -1 \) if \( b < 0 \). Therefore, we can express this as: \[ \frac{b}{|b|} = \text{sgn}(b) \] Where \( \text{sgn}(b) \) is the sign function, which gives \( 1 \) for positive \( b \) and \( -1 \) for negative \( b \). ### Step 4: Final expression Thus, we have: \[ \ln(ab) - \ln|b| = \ln(a \cdot \text{sgn}(b)) \] ### Conclusion So, the final result is: \[ \ln(ab) - \ln|b| = \ln(a) + \ln(\text{sgn}(b)) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (4) |62 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (5) (Multiple choice questions)|10 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

The value of log ab-log|b|=log a(b)log|a|(c)-log a(d) none of these

The value of log ab- log|b|=

If ln((a+b)/(3))=(ln a+ln b)/(2) then (a)/(b)+(b)/(a) is equal to:

iFa^(2)+b^(2)=34ab,then2log(a+b)-log a-log bisequal rarr

If a = 1 + "log"_(x) yz, b = 1 + "log"_(y) zx, c =1 + "log"_(z) xy, then ab+bc+ca =

a^(log b-log c)*b^(log c-log a)*c^(log a-log b) has a value of :

If log(2a-3b)=log a-log b, then a=

log (a+b) + log (a-b) - log (a^(2) -b^(2))=______

If a,b in(0,1) ,then minimum value of log_(a)(ab)-log_(b)((b)/(a)) is